

Effect of hot weather on diesel car NO_x emissions in Paris

In summer 2018, The Real Urban Emissions initiative (TRUE) measured emissions from more than 180,000 vehicles on the road at three Paris sites. Approximately 30% of measurements were at ambient temperatures above 30 °C, a substantial sample set.

CONTEXT

The temperature range defined for pollutant emission type-approval tests on the NEDC test cycle, used for most vehicles in the EU market, is 20-30 °C. That range was recently narrowed to a smaller tolerance window around 23 °C for new models type-approved under the WLTP test cycle. The Real Driving Emissions (RDE) on-road test protocol establishes boundary values for ambient conditions. To be valid, an RDE test must be performed at temperatures not exceeding 35 °C. And the RDE test protocol allows NOx emissions to increase by 60% between 30 and 35 °C. The inherent effect of rising temperatures between 30 and 40 °C on the performance of emissions control systems should be small. There is no obvious engineering reason why ambient temperatures in that range should significantly raise NO_v emissions.

Warmer temperatures increase ground-level ozone formation, so NO_x emissions at warmer temperatures have greater health impacts.

Average NOx emissions from diesel cars, in grams per kilo of fuel consumed. In hot weather, NOx emissions from Euro 6 cars were worse than emissions from Euro 4 cars at milder temperatures. The gap between in-use NOx emissions measured at ambient temperatures between 20 and 30 $^{\circ}$ C, which is the type-approval test range, and above 30 $^{\circ}$ C increases with every Euro standard, as type-approval NOx limits become more stringent.

FINDINGS

In-use NO_x emissions from diesel cars observed in Paris were significantly greater at ambient temperatures above 30 °C. NO_x emissions of Euro 5 and Euro 6 diesel cars were 20% to 30% higher than at temperatures within the NEDC type-approval test range (20-30 °C).

 NO_x emissions from Euro 6 diesel cars between 20 °C and 30 °C are lower than from cars certified to earlier standards, a fact attributable to exhaust aftertreatment systems required by Euro 6 but not by earlier standards.

But when temperatures exceed the NEDC type-approval test range NO_x emissions rise significantly, and the hot-weather performance gap widens with each Euro standard. Above 30 °C, NO_x emissions from Euro 6 diesels are even slightly worse than emissions from Euro 4 diesels measured on road at temperatures within the type-approval range (20-30 °C).

The pattern observed in Paris of higher NO, emissions from diesel cars

in hot weather raises the possibility that manufacturers are employing strategies to reduce the efficiency of NO_x control systems at temperatures outside the certification test range.

In 2019, from 1 June through 31 August, recorded high temperatures in Paris exceeded 30 °C on 20 of 92 days. As the effects of climate change intensify, the number of days with comparably high or higher temperatures in Europe will rise, especially in urban heat islands such as Paris.

TO FIND OUT MORE

For details on the Paris remote-sensing project and related questions, contact **Rachel Muncrief, rachel@theicct.org**. For more information on TRUE, visit **www.trueinitiative.org**.

DOWNLOAD THE PAPER

"Remote sensing of motor vehicle emissions in Paris" www.theicct.org/publications/xxxxxxxx