

Avoiding another dieselgate:

Current Practices and Concepts for Future Proposals

Gabriel M. Branco Fábio C. Branco

London, June 08th, 2016

General Concepts

Traditional methods for emission control are based on:

- **Type Approval certification**, through standard driving cycle to assure proper technology;
- In-Use Vehicles Annual Inspection to check maintenance conditions

But this is not enough: Vehicle technology has been improved and new methods are necessary for

- o Better control of **vehicle tuning** before dynamometer tests
- o Better knowledge of vehicle calibration strategies
- Monitoring vehicle **response parameters**
- $\circ~$ Vehicle testing under normal driving
- Statistical correlations to follow-up fleet in field, considering
 - Annual inspection;
 - Remote sensing and
 - Correlation of all results to type approval emission levels

This may bring a Broad Evaluation of vehicle models conformity in real world

Necessary Test Procedures Improvements

40

30

10

50

Usual sources of systematic deviations:

- Vehicle driving needs to check tolerance parameters graphically: 20
 - Smoothing speed cycle using procedure tolerance (theoretically up to 12% less energy)
 - Reducing speed for gearshifts
 - identifying #gear by controlling a new function: → speed/rpm

Necessary Test Procedures Improvements

Usual sources of systematic deviations:

- Coast down bias using vehicle tuning tolerances:
 - o Optimization of suspension tuning and wheel alignment
 - Avoiding braking before coasting
 - o Tire pressure etc.

Electronic management "on board intelligence"

- o Where adaptive calibration management ends ...
- $\circ \ \ ...$ and the cycle recognition for defeat devices starts .

All these aspects are found in both Diesel and Otto cycle engines

***** THEREFORE, WE NEED

NEW PARAMETERS SHALL BE MEASURED AND THEIR STRATEGIES COMPARED

- o Complementary **OBD/CAN parameters** to be monitored
- $\circ~$ Statistical comparisons between driving cycle and on road trip
- Real Driving Emission Test RDE
- Criteria for ROUTE VALIDATION as representative of official regulations

Route Validation as Cycle Representative

Urban traffic - 18,4 km/h

Download of OBD/CAN parameters

Parameters and Strategies Compared

Statistical evaluations may indicate tendencies under different fuels and driving patterns

This flex fuel vehicle showed lower ignition timing with higher ethanol blends, which is not expected in optimized calibrations.

Parameters and Strategies Compared

- Higher speeds present more time under deceleration (lambda >1)
- Canister purge have same behaviour in both traffic conditions
- This other flex fuel vehicle didn't show different timings for higher ethanol blends

Scatter Plots Compared

Regression lines may indicate different behavior in different trips

Spectra Analysis and Similarities

Decomposing time series into fundamental frequencies, the spectrum comparison shows the similarities in structural behaviour of vehicle software - Dendograms

Spectra Analysis and Dendograms

Civic FTP fases 1 e 2

Dendograms allow for comparisons of structural behavior of vehicle software, preserving the time series characteristics.

Conclusions

The statistical analyses are extensive and time consuming, but they have to be recognized by the regulations, to help identifying suspicious behaviors.

The statistical analysis can use the following tools:

- route validation: comparison of 3D histogram of speed-acceleration matrix
- vehicle acceptance (defeat devices):
 - direct comparison of their time series curves
 - comparison of scatter-plots and their linear regressions
 - comparison of percentile curves
 - comparison of dendrograms corresponding to the trip and the driving cycle
- o RDE measurements
- Correlations between I/M, remote sensing and type approval levels also help to identify models non conformities and poor durability tendencies

Thank you !

gabriel.tcl@uol.com.br ♪ ● +55 11 9 9216-8020 墨 +55 11 3845-3737

Backup

Backup

Ciclo rua agressivo UP!

FTP 75 Fase 1

FTP 75 Fase 2

